Species-Specific Duplication Event Associated with Elevated Levels of Nonstructural Carbohydrates in Sorghum bicolor.

Brenton ZW, Juengst BT, Cooper EA, Myers MT, Jordan KE, Dale SM, Glaubitz JC, Wang X, Boyles RE, Connolly EL, Kresovich S

Published: 7 March 2020 in G3 (Bethesda, Md.)
Keywords: Adaptation, Carbon partitioning, Duplication, Neofunctionalization, Poaceae
Pubmed ID: 32132167
DOI: 10.1534/g3.119.400921

Simple sugars are the essential foundation to plant life, and thus, their production, utilization, and storage are highly regulated processes with many complex genetic controls. Despite their importance, many of the genetic and biochemical mechanisms remain unknown or uncharacterized. Sorghum, a highly productive, diverse C4 grass important for both industrial and subsistence agricultural systems, has considerable phenotypic diversity in the accumulation of nonstructural sugars in the stem. We use this crop species to examine the genetic controls of high levels of sugar accumulation, identify genetic mechanisms for the accumulation of nonstructural sugars, and link carbon allocation with iron transport. We identify a species-specific tandem duplication event controlling sugar accumulation using genome-wide association analysis, characterize multiple allelic variants causing increased sugar content, and provide further evidence of a putative neofunctionalization event conferring adaptability in Sorghum bicolor Comparative genomics indicate that this event is unique to sorghum which may further elucidate evolutionary mechanisms for adaptation and divergence within the Poaceae. Furthermore, the identification and characterization of this event was only possible with the continued advancement and improvement of the reference genome. The characterization of this region and the process in which it was discovered serve as a reminder that any reference genome is imperfect and is in need of continual improvement.