Multi-locus genome-wide association study reveal genomic regions underlying root system architecture traits in Ethiopian sorghum germplasm.

Elias M, Chere D, Lule D, Serba D, Tirfessa A, Gelmesa D, Tesso T, Bantte K, Menamo TM

Published: 24 January 2024 in The plant genome
Keywords: No keywords in Pubmed
Pubmed ID: 38361379
DOI: 10.1002/tpg2.20436

The identification of genomic regions underlying the root system architecture (RSA) is vital for improving crop abiotic stress tolerance. To improve sorghum (Sorghum bicolor L. Moench) for environmental stress tolerance, information on genetic variability and genomic regions linked to RSA traits is paramount. The aim of this study was, therefore, to investigate common quantitative trait nucleotides (QTNs) via multiple methodologies and identify genomic regions linked to RSA traits in a panel of 274 Ethiopian sorghum accessions. Multi-locus genome-wide association study was conducted using 265,944 high-quality single nucleotide polymorphism markers. Considering the QTN detected by at least three different methods, a total of 17 reliable QTNs were found to be significantly associated with root angle, number, length, and dry weight. Four QTNs were detected on chromosome SBI-05, followed by SBI-01 and SBI-02 with three QTNs each. Among the 17 QTNs, 11 are colocated with previously identified root traits quantitative trait loci and the remaining six are genome regions with novel genes. A total of 118 genes are colocated with these up- and down-streams of the QTNs. Moreover, five QTNs were found intragenic. These QTNs are S5_8994835 (number of nodal roots), S10_55702393 (number of nodal roots), S1_56872999 (nodal root angle), S9_1212069 (nodal root angle), and S5_5667192 (root dry weight) intragenic regions of Sobic.005G073101, Sobic.010G198000, Sobic.001G273000, Sobic.009G013600, and Sobic.005G054700, respectively. Particularly, Sobic.005G073101, Sobic.010G198000, and Sobic.009G013600 were found responsible for the plant growth hormone-induced RSA. These genes may regulate root development in the seedling stage. Further analysis on these genes might be important to explore the genetic structure of RSA of sorghum.