Genetic and genomic resources of sorghum to connect genotype with phenotype in contrasting environments.

Boyles RE, Brenton ZW, Kresovich S

Published: 28 September 2018 in The Plant journal : for cell and molecular biology
Keywords: association mapping, genomic selection, high-throughput phenotyping, multi-parent advanced generation inter-cross, nested association mapping
Pubmed ID: 30260043
DOI: 10.1111/tpj.14113

With the recent development of genomic resources and high-throughput phenotyping platforms, the 21st century is primed for major breakthroughs in the discovery, understanding and utilization of plant genetic variation. Significant advances in agriculture remain at the forefront to increase crop production and quality to satisfy the global food demand in a changing climate all while reducing the environmental impacts of the world's food production. Sorghum, a resilient C4 grain and grass important for food and energy production, is being extensively dissected genetically and phenomically to help connect the relationship between genetic and phenotypic variation. Unlike genetically modified crops such as corn or soybean, sorghum improvement has relied heavily on public research; thus, many of the genetic resources serve a dual purpose for both academic and commercial pursuits. Genetic and genomic resources not only provide the foundation to identify and understand the genes underlying variation, but also serve as novel sources of genetic and phenotypic diversity in plant breeding programs. To better disseminate the collective information of this community, we discuss: (i) the genomic resources of sorghum that are at the disposal of the research community; (ii) the suite of sorghum traits as potential targets for increasing productivity in contrasting environments; and (iii) the prospective approaches and technologies that will help to dissect the genotype-phenotype relationship as well as those that will apply foundational knowledge for sorghum improvement.